如同地球天气中的风霜雨雪等气象要素一样,空间环境中也存在着可以探测的环境参数,只不过换成了粒子、磁场、电磁波等参量。与地面气象探测相比,空间天气监测有何不同?
据国家空间天气监测预警中心研究员黄聪介绍,一是范围更大,从监测距地面20~30公里高度的中高层大气往上直至太阳表面的活动区;二是对象复杂,既要监测中高层大气中的温度、密度、速度等流体力学参数,也要监测电离层、磁层和行星际以及太阳表面的粒子、场和温度等等离子体参数。
“空间天气监测的手段也多种多样。”黄聪说,对于电磁波,可以使用光学遥感和无线电手段来观察;对于磁场,采用磁通门或磁阻技术来感知;对于粒子,可以用半导体或静电分析仪的手段来监测。
空间天气研究主要关心哪些区域?
黄聪告诉记者,主要集中在三个区域,空间天气的源头——太阳,该区域到地球约1.5亿公里;空间天气传播与演化的日地连线区域——日地行星际和磁层,该区域从太阳表面一直到地面数千公里高空;空间天气的地球响应区域——电离层和中高层大气,该区域从数千公里高空一直到距地面20~30公里高度。
“一次完整的空间天气事件一般具有从太阳表面形成与发生、然后在行星际空间传播和演化、最后在地球电离层和中高层大气中产生影响和效应的规律。”黄聪说,因此,从空间天气业务需求来说,需要对从太阳—行星际—磁层空间—电离层和中高层大气,这一空间天气事件因果链上的重要区域进行必要的监测,监测内容包括太阳表面的活动区、行星际、磁层和电离层中的粒子、电场、磁场和波动等等离子体和电磁参数,热层和电离层中的密度、温度和速度等流体参数。
空间天气的研究对象是地球表面20公里以上的空间领域,而这正是大部分的航天、卫星、通信、导航活动发生或依赖的空间领域。因此,灾害性的空间天气会对其产生直接的影响。 |